Decorating graphene nanosheets with electron accepting pyridyl-phthalocyanines.
نویسندگان
چکیده
We describe herein the preparation of novel exfoliated graphene-phthalocyanine nanohybrids, and the investigation of their photophysical properties. Pyridyl-phthalocyanines (Pcs) are presented as novel electron accepting building blocks of variable strengths with great potential for the exfoliation of graphite via their immobilization onto the basal plane of graphene in dimethylformamide (DMF) affording single layered and turbostratic graphene based . were fully characterized (AFM, TEM, Raman, steady-state and pump probe transient absorption spectroscopy) and were studied in terms of electron donor-acceptor interactions in the ground and excited states. In this context, electron transfer upon photoexcitation from graphene to the electron accepting Pcs with dynamics, for example, in of <1 and 330 ± 50 ps for charge separation and charge recombination, respectively, was corroborated in a series of steady-state and time-resolved spectroscopy experiments.
منابع مشابه
Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملInvestigation of microstructure and physical properties in nanocomposite solder reinforced with various percent of graphene nanosheets (SAC0307+GNSs)
Development of electronic industries, compression of electronic equipment, and removing lead from electronic circuits for environmental issues, resulted in a significant challenge in design and development of tin-based lead-free solders with physical and mechanical properties similar to old tin-lead alloys. In this regard, the set of Sn-Ag-Cu alloys with eutectic and near eutectic compositions ...
متن کاملInvestigation of microstructure and physical properties in nanocomposite solder reinforced with various percent of graphene nanosheets (SAC0307+GNSs)
Development of electronic industries, compression of electronic equipment, and removing lead from electronic circuits for environmental issues, resulted in a significant challenge in design and development of tin-based lead-free solders with physical and mechanical properties similar to old tin-lead alloys. In this regard, the set of Sn-Ag-Cu alloys with eutectic and near eutectic compositions ...
متن کاملStudy and Electrochemical Determination of Tyrosine at Graphene Nanosheets Composite Film Modified Glassy Carbon Electrode
A graphene nanosheets (GNS) film coated glassy carbon electrode (GCE) was fabricated for sensitive determination of tyrosine (Tyr). The GNS-based sensor was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The voltammetric techniques were employed to study electro-oxidation of Tyr. The results revealed that the modified electrode showed an electrocatalyt...
متن کاملHighly Dispersed NiO Nanoparticles Decorating graphene Nanosheets for Non-enzymatic Glucose Sensor and Biofuel Cell
Nickel oxide-decorated graphene nanosheet (NiO/GNS), as a novel non-enzymatic electrocatalyst for glucose oxidation reaction (GOR), was synthesized through a facile hydrothermal route followed by the heat treatment. The successful synthesis of NiO/GNS was characterized by a series of techniques including XRD, BET, SEM and TEM. Significantly, the NiO/GNS catalyst show excellent catalytic activit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 13 شماره
صفحات -
تاریخ انتشار 2015